
Chapter 9

Magnetic Devices II: Reluctance

and Inductance

Up to now we have viewed magnetically produced forces as arising from the action of a
magnetic field on moving charge carriers, e.g. the force on a current carrying conductor.
Although this model gave the correct results for the slotted armature DC motor, in fact the
force was actually acting on the iron of the armature, and not on the armature coils.

In some cases, there is no visible current on which
the magnetic field can even appear to act. A fa-
miliar example of this is the force produced when
picking up a nail with a magnet, either a perma-
nent magnet or an electromagnet.

We could analyze this by looking at the interaction between the magnetic field of the
magnet and the induced magnetic moment in the nail, but actually calculating this induced
magnetism (which will vary with the distance from the magnet) would be very difficult.
Instead, we will apply energy methods similar to those developed in Section 5.4.
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9.1 Energy Balance in Magnetic Systems

If we take a closer look at an electromagnet pick-
ing up a nail, we find that work must be done
to lift the weight of the nail through a distance
x. This work is done by the magnetic field of the
electromagnet whose energy in turn comes from
the electrical source to which it is connected.

A block diagram of the process would look something like this:
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where We is the total energy of the electrical system (e.g. a battery), Wm is the total energy
of the mechanical system (the kinetic and gravitational potential energy of the nail), and
Wf is the energy stored in the magnetic field.

If we assume a lossless system, then any energy flowing out of the electrical system must
be accounted for by corresponding changes in the field and mechanical energies, i.e.:

dWe = ei dt = dWf + dWm

or
dWf = ei dt − dWm

Using Faraday’s law (e = dλ/dt) and (5.17)

dWf = i dλ − F dx (9.1)

We may express dWf as

dWf (λ, x) =
∂Wf

∂λ
dλ +

∂Wf

∂x
dx

so

i dλ − F dx =
∂Wf

∂λ
dλ +

∂Wf

∂x
dx
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Since this must be true for all dλ and dx:

i =
∂Wf (λ, x)

∂λ

∣

∣

∣

∣

x=const

(9.2)

and

F = −
∂Wf (λ, x)

∂x

∣

∣

∣

∣

λ=const

(9.3)

While it’s easy to postulate holding λ constant while varying x, it’s difficult to do so in
practice. Constant λ requires that dλ

dt
be zero, but dλ

dt
= 0 means that the voltage across the

coil is zero, i.e. a short circuit. However, if λ 6= 0 there must be some current circulating in
the coil, and if this current is not to decay away, we must have R = 0. This corresponds to
holding Q constant in the electrostatic case where we place the desired charge on the plates
and then leave them open circuited.

In practice it is often more useful to be able to express the force as a function of current.
To this end we define the coenergy W ′

f :

W ′

f (i, x) = iλ − Wf (λ, x) (9.4)

Taking the differential
dW ′

f (i, x) = d(iλ) − dWf (λ, x)

Using
d(iλ) = i dλ + λ di

and (9.1) gives

dW ′

f = idλ + λdi − idλ + Fdx

= λ di + F dx

We can express dW ′

f as

dW ′

f =
∂W ′

f

∂i
di +

∂W ′

f

∂x
dx

Using the same argument as above

λ =
∂W ′

f (i, x)

∂i

∣

∣

∣

∣

∣

x=const

(9.5)

F =
∂W ′

f (i, x)

∂x

∣

∣

∣

∣

∣

i=const

(9.6)

In a rotational system, P = Tω so we get

T = −
∂Wf (λ, θ)

∂θ

∣

∣

∣

∣

λ=const

(9.7)

and

T =
∂W ′

f (i, θ)

∂θ

∣

∣

∣

∣

∣

i=const

(9.8)
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9.1.1 Finding Wf and W
′

f in a Magnetic Circuit

In order for (9.3) or (9.6) to be useful, we must be able to find Wf and W ′

f , preferably in
a form which can be easily differentiated. From (6.20) we know that this can be found in
terms of the current i and the flux linkage λ, so our first step will be to determine how
changes in x influence the relationship between these two variables.

Consider a magnetic circuit consisting of a coil and a two piece iron core with a pair of air
gaps. The length of the gaps x may be varied by moving the “I” shaped section of the core
back and forth.

1
S

L

b

$

A = cross sectional area of core
lc = length of flux path in core
lg = length of flux path in gap = 2x

Because flux is continuous, if we neglect fringing,

Bc = Bg = B

The flux linkage is λ = NΦ = NAB and by Ampère’s law Ni = Hclc + Hglg. For x = 0,
Ni = Hclc or i = Hclc

N
. Since λ is proportional to B and i is proportional to Hc the plot of

λ vs. i has the same shape as the B-H curve of the core material, but with with a different
scale.

B

H i

λ

x = 0

As x increases we get a family of curves that look like this:
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i

λ

x = 0

x = x1

x = x2

9.1.1.1 Magnetic Energy

To determine the stored field energy, we can use the fol-
lowing procedure: We start with no stored energy, i.e.
Wf = 0. If we assume that the core material has negli-
gible hysteresis (i.e. no residual magnetization) then we
must have i = 0. We force dWm to be zero by fixing
x = x1, so that all electrical energy flowing into the sys-
tem must be converted to field energy. As we increase the
current from zero to i1 the electrical power supplied to
the system is P = iv = idλ

dt
. With x fixed, dx = 0, hence

dWm = 0 so

Wf = We =

∫ t1

0

P dt =

∫ t1

0

i
dλ

dt
dt =

∫ λ1

0

i dλ = Wf (x, λ1)

If we move to x = x2 along a path of constant λ then

Fdx = dWm = dWe − dWf

= idλ − dWf

For constant λ, dλ = 0 and

F = −
∂Wf (λ, x)

∂x

∣

∣

∣

∣

λ=const

(9.9)

Graphically, Wf is equal to the area between the λ − i
curve and the λ axis. As x changes, the change in Wf will
be the area between the two corresponding λ − i curves.
In the figure this is

dWf = A + B − A = B
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9.1.1.2 Magnetic Coenergy

Rather than holding λ constant while changing x as we
did above, suppose instead we hold i constant. Starting
with x = x1 and i = 0, increase i to i0 (path a in the
figure). With i fixed at i1, change x from x1 to x2 (path
b). During this motion, the change in electrical energy is

∆We =

∫ λ2

λ1

i0 dλ

= i0(λ2 − λ1)

= area(A + B)

Similarly, the change in field energy is ∆Wf = Wf2
− Wf1

where

Wf1
= area(C + D)

Wf2
= area(C + A)

or ∆Wf = area(C + A − C − D) = area(A − D). Combining these we have

∆Wm = ∆We − ∆Wf

= area(A + B) − area(A − D)

= area(B + D)

But this is just the increase in area under the λ − i curve, i.e. in
∫

λ di. This integral also
has units of energy, and since it is the complement of the stored field energy, it is called the
coenergy:

W ′

f (x, i0) =

∫ i0

0

λ(x, i) di (9.10)

and

F =
∂W ′

f (x, i)

∂x

∣

∣

∣

∣

∣

i=const

(9.11)

9.1.1.3 Alternate Forms for Energy and Coenergy

We can express the energy and coenergy in terms of other magnetic circuit variables. By
substituting λ = NΦ and F = NI we get

Wf =

∫

i dλ =

∫

F

n
d(nΦ) =

∫

F dΦ (9.12)

and

W ′

f =

∫

Φ dF (9.13)
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We could also integrate the magnetic energy density over the volume of the field:

Wf =

∫

V
wm dv =

∫

V

(

∫ B0

0

H · dB

)

dv (9.14)

In air this becomes

Wf =
1

2

∫

BH dv

=
1

2

∫

H2µ0 dv

=
1

2

∫

B2

µ0

dv

Similarly, the coenergy is

W ′

f =

∫

V

(

∫ H0

0

B · dH

)

dv (9.15)

9.1.1.4 The Linear Case

For an ideal, linear magnetic material (or the linear region
of a real material) we have B = µH and λ = Li, where
L is the inductance. We then get the following formulas
for energy and coenergy:

Energy Wf Coenergy W ′

f

Electric Circuit (1

2
λi)

1

2

λ2

L

1

2
Li2

Magnetic Circuit (1

2
ΦF)

1

2

Φ2

P

1

2
PF2

Magnetic Field (1

2
BH)

1

2

B2

µ

1

2
µH2

(energy density)

Table 9.1: Energy and Coenergy for Linear Magnetic Systems

In the constant λ case, dλ
dt

= 0 and hence v = 0 and dWe = 0. This means that all of the
work done on the mechanical system must come from the magnetic field energy. I.e the
force acts to reduce the field energy.
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On the other hand, for i constant we have F dx = dWm = dW ′

f . In the linear case W ′

f = Wf

so the force acts to increase the field energy. Since dWe = i dλ and dWf = 1

2
i dλ, one half

of the electrical input energy is converted to mechanical work and the other half goes to
increase the field energy. This is called the 50-50 rule.

9.2 Reluctance Force and Torque

We can now examine several prototype devices where the force (or torque) comes from the
change in stored field energy due to changes in x (or θ). In these examples we will assume
that the reluctance of the flux path through the iron is sufficiently smaller than that through
the air gap that it may be ignored (i.e. that µr = ∞ for the iron components).

9.2.1 Variable Gap Electromagnet

In the device on the right the flux in the gaps is

Φ =
F

R
= F

µ0A

2x

so

F = Φ
2x

µ0A

i

x

F

Using (9.12)

Wf =

∫

F dΦ =

∫

Φ
2x

µ0A
dΦ =

Φ2

2

2x

µ0A

If we hold the flux constant, the force is

F = −
∂Wf

∂x
= −

Φ2

µ0A
= −

λ2

n2µ0A

For constant current (and therefore constant F)

W ′

f =

∫

Φ dF =

∫

F
µ0A

2x
dF = F2

µ0A

4x

and

F =
∂W ′

f

∂x
= −

F2µ0A

4x2
= −

n2i2µ0A

4x2

The negative sign for the force means it is in the direction of decreasing x, i.e. the force
tends to close the gap.
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9.2.2 Variable Overlap

If instead of having a gap of fixed area and variable length,
we fix the length of the gap and allow its effective area to
vary we get a significantly different relationship between
force and displacement.

R =
2g

µ0A
=

2g

µ0wx

Φ =
F

R
= F

µ0wx

2g

W ′

f =

∫

Φ dF =
1

2

µ0wx

2g
F2

F =
∂W ′

f

∂x
=

µ0w

4g
F2 =

n2i2µ0w

4g

L

1
b

Q

a

The force still increases as i2 but is now independent of x instead of increasing as 1

x2 . This
is similar to the difference in behavior of the parallel plate electrostatic actuator between
perpendicular and transverse motion.

9.2.3 Rotary Reluctance Machine

It is also possible to build a rotary variable reluctance device
where the gap area varies with angle. In this case

R =
l

µA
=

2g

µ0wrθ

where θ is the angle of overlap between the rotor and stator.
The coenergy is

W ′

f =
1

2
Li2

where the inductance is

L =
λ

i
=

NΦ

F/N
= N2

Φ

F
=

N2

R
=

N2µ0wrθ

2g

so the torque is

T =
∂W ′

f

∂θ
=

1

2
i2

dL

dθ
=

N2µ0wr

4g
i2 (9.16)

Figure 9.1: Rotary Reluc-
tance Device
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9.2.4 Multiply Excited Systems

So far we have only considered systems with a single electrical input, so called singly excited

systems. We will also need to be able to analyze systems with multiple independent wind-
ings, or with a mixture of electrically excited coils and permanent magnets, i.e. multiply

excited systems.

We can convert the system of Figure 9.1 to a doubly ex-
cited system by winding a second coil around the rotor.
We can find the magnetic field energy using the same
techinque we used previously of holding θ fixed and in-
creasing the current from i = 0. However in this case,
we must consider two separate currents, as well as the
mutual flux that couples the windings of both coils.

In this case we have
dWe = v1i1 dt + v2i2 dt

Since v dt = dλ, this becomes
dWe = i1 dλ1 + i2 dλ2 (9.17)

The total flux linking winding 1 is

λ1 = L11i1 + L12i2 (9.18)

where L11 is the self inductance of winding 1 and L12 is the mutual inductance between
winding 2 and winding 1. Similarly

λ2 = L21i1 + L22i2 (9.19)

For simplicity, we can write L1 = L11, L2 = L22, and M = L12 = L21. Substituting (9.18)
and (9.19) into (9.17) we get

dWe = L1i1 di1 + (Mi1 di2 + Mi2 di1) + L2i2 di2 = L1i1 di1 + M d(i1i2) + L2i2 di2

Since θ is fixed dWm = 0 and

Wf = We =

∫

dWe =
1

2
L1i

2

1 + Mi1i2 +
1

2
L2i

2

2

For the linear case, W ′

f = Wf so

T =
∂W ′

f

∂θ
=

1

2
i21

dL1

dθ
+

1

2
i22

dL2

dθ
+ i1i2

dM

dθ
(9.20)

The first two terms are reluctance torques, similar to that found in Section 9.2.3. Indeed,
if we set i2 = 0 (9.20) becomes (9.16), as we would expect. The third term represents the
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alignment torque between the magnetic fields of the rotor and stator. Alignment torque will
be dealt with in more detail in the next chapter.

It is significant to note that variations in the stator self inductance
can be eliminated by making the rotor fully cylindrical and smooth.
This will eliminate the corresponding reluctance torque, so for ex-
ample, the system on the right will produce no torque. Likewise, a
smooth cylindrical stator structure will eliminate variations in rotor
self inductance.
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